If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-6=229
We move all terms to the left:
5p^2-6-(229)=0
We add all the numbers together, and all the variables
5p^2-235=0
a = 5; b = 0; c = -235;
Δ = b2-4ac
Δ = 02-4·5·(-235)
Δ = 4700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4700}=\sqrt{100*47}=\sqrt{100}*\sqrt{47}=10\sqrt{47}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{47}}{2*5}=\frac{0-10\sqrt{47}}{10} =-\frac{10\sqrt{47}}{10} =-\sqrt{47} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{47}}{2*5}=\frac{0+10\sqrt{47}}{10} =\frac{10\sqrt{47}}{10} =\sqrt{47} $
| (6x+9)−(7x+1)= | | 5n^2+9=29 | | (6x+9)−(7x+1)= | | h^2+4h-242=0 | | 5-a+4a=2a+12 | | 3=-2k+-9 | | x+13x-5=4+x | | 5(4-x)=8 | | -2(c-9)=-2 | | 7^x+3=7^3x | | 6=4u−6 | | 22x+5x−4=0 | | 22x+5x−4=0. | | 3/x+5=2/x-4 | | 2d+4=5+5d | | -144=6(1+5m) | | 1/2(x-8)^2=3 | | h+7/2=-3 | | (2x+10/2)-x=5 | | f(-7)=5(-7)^2+8(-7)+3 | | -2u^2-11u-15=0 | | 6x+35=77 | | 3(z-19)=3 | | 4x*2.5=2x-3x7 | | −144=6(1+5m) | | 3x+x-4=4x+8-12 | | b^2=9/441 | | 0.25x+1.15x=2 | | 3x+x-4=4x+8 | | 9/441=b | | 3x—4=4x+x+8 | | 2x^2+4x−96=0 |